Sains Malaysiana 53(6)(2024): 1309-1320
http://doi.org/10.17576/jsm-2024-5306-07
Development of PCL/PMMA and PCL/PEG Polymeric Film as Potential for
Algae Removal
(Pembangunan Filem Polimer PCL/PMMA dan PCL/PEG Berpotensi sebagai
Penyingkiran Alga)
SHAHIRA
HUSNINA SHABUDDIN1, NORMAWATY MOHAMMAD-NOOR2, NORAZMI
AHMAD1,3, ANWAR IQBAL4 & MOHAMAD WAFIUDDIN ISMAIL1,3,*
1Department of Chemistry, Kulliyyah of Science, International Islamic
University Malaysia, 25200 Kuantan, Pahang, Malaysia
2Department of Marine Science, Kulliyyah of Science, International Islamic
University Malaysia, 25200 Kuantan, Pahang, Malaysia
3Sustainable NanoTechnology and Computational Modelling Research Group,
Kulliyyah of Science,
International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
4School of Chemical Sciences, Universiti Sains Malaysia, 11800 Gelugor,
Penang, Malaysia
Received: 2 January 2024/Accepted: 13 May 2024
Abstract
Human activities generate excess
nutrients that can lead to harmful algal blooms (HABs), which are increasing in
number and severity worldwide, causing significant ecological problems and
substantial economic losses. Cost-effective polymeric films with ease of
operation represent a promising and sustainable alternative to traditional HABs
mitigation methods in various aquatic systems. In this study, composite polymer
films, specifically polycaprolactone with poly(methyl methacrylate) (PCL/PMMA)
and polycaprolactone with polyethylene glycol (PCL/PEG), were employed for algae
mitigation. To the best of our knowledge, no prior
studies have explored the application of PCL/PMMA and PCL/PEG composite polymer
films for algae mitigation. These films
were prepared using solvent casting methods. The successfully prepared film
ratios were 1:0.2, 1:0.4, and 1:0.6. ATR-FTIR analysis confirmed the successful
preparation of PCL/PMMA and PCL/PEG by detecting characteristic functional
group peaks corresponding to each pure polymer, suggesting the possibility of
non-covalent bond interactions between the polymers in the composites. Thermal
analysis (TGA) indicated increased thermal stability for all film ratios. Algae
mitigation studies form light microscope analysis showed the presence of algal
cells within the composite. Removal efficiency improved with higher ratios of
these composite polymer films, with PCL/PMMA outperforming PCL/PEG. Notably,
the 1:0.4 PCL/PMMA film exhibited highly efficient algae removal, with
interactions between microalgae cells and the film observed within a shorter time.
This film achieved the highest removal efficiency of 10.6% within a 15-min
interval compared to others. From this preliminary study, the composite polymer
films show good potential and promising candidate for mitigating algae-related
issues.
Keywords: Harmful algal blooms; mitigation; PCL; PEG;
PMMA; polymeric films
Abstrak
Nutrien
berlebihan hasil aktiviti manusia telah mengakibatkan peningkatan kembangan
alga berbahaya (HABs) yang dilihat semakin parah di seluruh dunia. Keadaan ini menyebabkan
masalah ekologi yang ketara dan kerugian ekonomi yang besar. Sebagai alternatif
kepada kaedah tradisi mitigasi HABs dalam pelbagai sistem akuatik, kajian ini
memfokuskan pada penggunaan polimer filem yang kos berkesan dengan kemudahan
operasi. Filem polimer komposit, khususnya polikaprolakton dengan poli(metil
metakrilat) (PCL/PMMA) dan polikaprolakton dengan polietilena glikol (PCL/PEG),
diuji sebagai satu kaedah penyelesaian yang berpotensi dan mampan bagi masalah
pertumbuhan alga. Menurut carian kami, kajian dalam mengeksplorasi penggunaan
filem polimer komposit PCL/PMMA dan PCL/PEG dalam mitigasi alga masih belum
pernah dijalankan. Filem-filem ini telah disediakan melalui kaedah acuan
pelarut dengan filem berjaya disiapkan pada nisbah 1:0.2, 1:0.4 dan 1:0.6.
Analisis ATR-FTIR telah mengesahkan keberhasilan penyediaan PCL/PMMA dan
PCL/PEG dengan kehadiran puncak kumpulan berfungsi yang sepadan dengan setiap
polimer tulen dengan ini menunjukkan interaksi ikatan bukan kovalen antara
polimer dalam komposit filem yang dihasilkan. Analisis termal (TGA) menunjukkan
peningkatan kestabilan termal untuk semua nisbah filem. Kajian mitigasi alga
daripada analisis mikroskop cahaya mendedahkan kehadiran sel alga dalam
komposit filem. Kecekapan penyingkiran meningkat dengan nisbah filem komposit
yang lebih tinggi dengan PCL/PMMA melebihi PCL/PEG. Filem PCL/PMMA, 1:0.4
menunjukkan keberkesanan penyingkiran alga yang tinggi dengan interaksi antara
sel mikroalga dan filem berlaku dalam waktu yang lebih singkat. Dalam tempoh 15
minit, filem ini mencapai kecekapan penyingkiran tertinggi sebanyak 10.6%
berbanding dengan nisbah lain. Daripada kajian awal ini, dapat disimpulkan
bahawa filem polimer komposit memperlihatkan potensi yang besar dalam menangani
isu berkaitan dengan pertumbuhan alga dan merupakan calon berkemampuan untuk
aplikasi lebih lanjut.
Kata kunci: Filem polimer; mitigasi; PCL; PEG;
pertumbuhan alga merbahaya; PMMA
REFERENCES
Abdelrazek, E.M.,
Hezma, A.M., El-khodary, A. & Elzayat, A.M. 2016. Spectroscopic studies and
thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of Basic
and Applied Sciences 3(1): 10-15. https://doi.org/10.1016/j.ejbas.2015.06.001
Balaji-Prasath, B.,
Wang, Y., Su, Y.P., Hamilton, D.P., Lin, H., Zheng, L. & Zhang, Y. 2022.
Methods to control harmful algal blooms: A review. Environmental Chemistry
Letters 20: 3133-3152. https://doi.org/10.1007/s10311-022-01457-2
Belin, C., Soudant, D.
& Amzil, Z. 2021. Three decades of data on phytoplankton and phycotoxins on
the French coast: Lessons from REPHY and REPHYTOX. Harmful Algae 102:
101733. https://doi.org/10.1016/j.hal.2019.101733
Bhagabati, P. 2020.
Biopolymers and biocomposites-mediated sustainable high-performance materials
for automobile applications. In Sustainable Nanocellulose and Nanohydrogels
from Natural Sources, edited by Mohammad, F., A. Al-Lohedan, H. &
Jawaid, M. Elsevier. pp. 197-216. https://doi.org/10.1016/b978-0-12-816789-2.00009-2
Chekli, L., Eripret,
C., Park, S.H., Tabatabai, S.A.A., Vronska, O., Tamburic, B., Kim, J.H., &
Shon, H.K. 2016. Coagulation performance and floc characteristics of
polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4)
and ferric chloride (FeCl3) in algal turbid water. Separation and
Purification Technology 175: 99-106. https://doi.org/10.1016/j.seppur.2016.11.019
Cotruvo, J. 2015.
Treating algal blooms and algal toxins in drinking water. Opflow 41(2):
16-17. https://doi.org/10.5991/opf.2015.41.0008
Del Ángel-Sánchez, K.,
Borbolla-Torres, C.I., Palacios-Pineda, L.M., Ulloa-Castillo, N.A. &
Elías-Zúñiga, A. 2019. Development, fabrication, and characterization of
composite polycaprolactone membranes reinforced with TiO2 nanoparticles. Polymers 11(12): 1955. https://doi.org/10.3390/polym11121955
Donell, M. (n.d.). The
Dissolution of Polymethylmethacrylate (PMMA) in Salt Water. https://Www.ozmo.io/. Retrieved June 24, 2023, https://www.ozmo.io/the-dissolution-of-polymethylmethacrylate-pmma-in-salt-water/
Douglas, P.S.,
Albadarin, A.B., Sajjia, M., Mangwandi, C., Kuhs, M., Collins, M.N. &
Walker, G. 2016. Effect of poly ethylene glycol on the mechanical and thermal
properties of bioactive poly(ε-caprolactone) melt extrudates for
pharmaceutical applications. International Journal of Pharmaceutics 500(1-2): 179-186. https://doi.org/10.1016/j.ijpharm.2016.01.036
Elzubair, A., Elias,
C.N., Miguez, C., Lopes, H.P. & Vieira, B. 2006. The physical
characterization of a thermoplastic polymer for endodontic obturation. Journal
of Dentistry 34(10): 784-789. https://doi.org/10.1016/j.jdent.2006.03.002
Ghernaout, D. 2020.
Water treatment coagulation: Dares and trends. Open Access Library Journal 7: e6636. https://doi.org/10.4236/oalib.1106636
Ghosh, S., Chatterjee,
S., Shiva Prasad, G. & Pal, P. 2021. Effect of climate change on aquatic
ecosystem and production of fisheries. In Inland Waters - Dynamics and Ecology, edited by Devlin, A., Pan, J. & Manjur Shah, M. IntechOpen. https://doi.org/10.5772/intechopen.93784
Hooman, M., Sajjadi, N.,
Marandi, R., Zaeimdar, M. & Akbarzadeh, N. 2021. Design
of a novel PEBA/CDs polymeric fibrous composite nanostructure in order to
remove navicula algal and improve the quality of drinking water. Polymer
Bulletin 79(9): 7459-7477. https://doi.org/10.1007/s00289-021-03852-1
Huang, N., Li, S., Liu,
H. & Wang, J. 2012. Thermal stability and
degradation kinetics of poly(methyl methacrylate)/sepiolite nanocomposites by
direct melt compounding. Journal of Macromolecular Science, Part B: Physics 52(4): 521-529. https://doi.org/10.1080/00222348.2012.716318
Ibrahim, N.H., Iqbal,
A., Mohammad-Noor, N., Razali, R.M., Sreekantan, S., Yanto, D.H.Y., Mahadi,
A.H. & Wilson, L.D. 2022. Photocatalytic remediation of harmful Alexandrium
minutum bloom using hybrid chitosan-modified TiO2 films in
seawater: A lab-based study. Catalysts 12(7): 707.
Imai, I., Inaba, N. & Yamamoto, K. 2021. Harmful algal blooms and environmentally friendly
control strategies in Japan. Fisheries Science 87(4): 437-464. https://doi.org/10.1007/s12562-021-01524-7
Joh, G., Choi, Y.S., Shin, J.K. & Lee, J.
2011. Problematic algae in the sedimentation and filtration process of water
treatment plants. Journal of Water Supply: Research and Technology-Aqua 60(4): 219-230. https://doi.org/10.2166/aqua.2011.035
Li, M., Pu, Y., Chen, F. & Ragauskas, A.J.
2021. Synthesis and characterization of
lignin-grafted-poly(ε-caprolactone) from different biomass sources. New
Biotechnology 60: 189-199. https://doi.org/10.1016/j.nbt.2020.10.005
Li, Y., Ma, Q., Huang, C. & Liu, G. 2013. Crystallization of poly (ethylene glycol) in poly
(methyl methacrylate) networks. Materials Science 19(2). https://doi.org/10.5755/j01.ms.19.2.4430
Mansoori, S., Davarnejad,
R., Matsuura, T. & Ismail, A.F. 2020. Membranes based on
non-synthetic (natural) polymers for wastewater treatment. Polymer Testing 84: 106381. https://doi.org/10.1016/j.polymertesting.2020.106381
Mansur, H.S., Oréfice,
R.L. & Mansur, A.A.P. 2004. Characterization of poly(vinyl
alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle
X-ray scattering and FTIR spectroscopy. Polymer 45(21): 7193-7202. https://doi.org/10.1016/j.polymer.2004.08.036
Molnar, C. & Gair,
J. 2019. Overview of Photosynthesis.https://opentextbc.ca/biology/chapter/5-1-overview-of-photosynthesis
Mousavian, Z., Safavi,
M., Salehirad, A., Azizmohseni, F., Hadizadeh, M. & Mirdamadi, S. 2023. Improving biomass and carbohydrate
production of microalgae in the rotating cultivation system on natural
carriers. AMB Express 13: 39. https://doi.org/10.1186/s13568-023-01548-5
Naser, A.Z., Deiab, I., Defersha, F. &
Yang, S. 2021. Expanding poly(lactic
acid) (PLA) and polyhydroxyalkanoates (PHAs) applications: A review on
modifications and effects. Polymers 13(23): 4271. https://doi.org/10.3390/polym13234271
Niu, Z.G., Hu, Z.P., Zhang, Y. & Sun, Y.Y.
2017. Effect of chlorine dosage in prechlorination on trihalomethanes and
haloacetic acids during water treatment process. Environmental Science and
Pollution Research 24: 5068-5077. 10.1007/s11356-016-8265-x
Niu, Y., Dong, W.,
Wang, H., Bi, D., Zhu, G., Tang, S., Wei, J., Yang, L. & Yao, X. 2014.
Mesoporous magnesium silicate-incorporated
poly(ε-caprolactone)-poly(ethylene glycol)poly(ε-caprolactone)
bioactive composite beneficial to osteoblast behaviors. International
Journal of Nanomedicine 9(1): 2665-2675. https://doi.org/10.2147/ijn.s59040
Osama, A., Hosney, H. & Moussa, MS. 2021. Potential of household photobioreactor for algae
cultivation. Journal of Water and Climate Change 12(6): 2147-2180. https://doi.org/10.2166/wcc.2021.261
Panagopoulos, A. 2021.
Study and evaluation of the characteristics of saline wastewater (brine)
produced by desalination and industrial plants. Environmental Science and
Pollution Research 29(16): 23736-23749.
https://doi.org/10.1007/s11356-021-17694-x
Pardeshi, P.M. & Mungray, A.A. 2019. Photo-polymerization as a new approach to fabricate
the active layer of forward osmosis membrane. Scientific Reports 9:
1937. https://doi.org/10.1038/s41598-018-36346-8
Patrojanasophon, P.,
Pitaktunskul, B., Ngawhirunpat, T., Akkaramongkolporn, P., Opanasopit, P. &
Nattapulwat, N. 2019. Effect of polyethylene glycol on cellulose acetate films
designed for controlled porosity osmotic pump systems. Indian J. Pharm. Sci. 81(1): 117-123. https://doi.org/10.4172/pharmaceutical-sciences.1000486
Pekdemir, M.E., Öner, E., Kök, E. & Qader,
I. 2021. Thermal behavior and shape memory properties
of PCL blends film with PVC and PMMA polymers. Iranian Polymer Journal 30(6): 633-641. https://doi.org/10.1007/s13726-021-00919-8
Rajasulochana, P.
& Preethy, V. 2016. Comparison on efficiency of various techniques in
treatment of waste and sewage water - A comprehensive review. Resource-Efficient
Technologies 2(4): 175-184. https://doi.org/10.1016/j.reffit.2016.09.004
Repanas, A., Wolkers,
W.F., Gryshkov, O., Muller, M.A. & Glasmacher, B. 2015. PCL/PEG electrospun
fibers as drug carriers for the controlled delivery of dipyridamole. Journal
of In Silico and In Vitro Pharmacology 1(2): 1-10. https://doi.org/10.21767/2469-6692.10003
Qi, J., Ma, B., Miao,
S., Liu, R., Hu, C. & Qu, J. 2021. Pre-oxidation enhanced cyanobacteria
removal in drinking water treatment: A review. Journal of Environmental Sciences 110: 160-168. https://doi.org/10.1016/j.jes.2021.03.040
Ren, X., Yu, Z., Qiu,
L., Cao, X. & Song, X. 2021. Effects of modified clay on Phaeocystis globosa growth and colony formation. International Journal of Environmental Research
and Public Health 18(19): 10163. https://doi.org/10.3390/ijerph181910163
Sen, B., Tahir, M., Sonmez, F., Turan Kocer,
M.A. & Canpolat, O. 2018. Relationship of algae
to water pollution and waste water treatment. In Water Treatment, edited
by Elshorbagy, W. & Chowdhury, R.K. IntechOpen.
https://doi.org/10.5772/51927
Sonawane, S., Thakur,
P., Sonawane, S.H. & Bhanvase, B.A. 2021. Nanomaterials for membrane
synthesis: Introduction, mechanism, and challenges for wastewater treatment. In Handbook of Nanomaterials for Wastewater Treatment, edited by Bhanvase, B., Sonawane, S., Pawade, V. &
Pandit, A. Elsevier. pp. 537-553. https://doi.org/10.1016/b978-0-12-821496-1.00009-x
Tang, C.Y., Yang, Z.,
Guo, H., Wen, J.J., Nghiem, L.D. & Cornelissen, E. 2018. Potable water
reuse through advanced membrane technology. Environmental Science &
Technology 52(18): 10215-10223. https://doi.org/10.1021/acs.est.8b00562
Ulu, A., Köytepe, S. & Ates, B. 2016. Synthesis and characterization of PMMA composites
activated with starch for immobilization of L-asparaginase. J. Appl. Polym. Sci. 133(19): 43421. https://doi.org/10.1002/app.43421
Venâncio, C.,
Ferreira, I., Martins, M.A., Soares, A.M., Lopes, I. & Oliveira, M. 2019.
The effects of nanoplastics on marine plankton: A case study with
polymethylmethacrylate. Ecotoxicology and Environmental Safety 184:
109632. https://doi.org/10.1016/j.ecoenv.2019.109632
von Sperling, M.,
Verbyla, M.E. & Oliveira, S.M.A.C. 2020. Assessment of Treatment Plant
Performance and Water Quality Data: A Guide for Students, Researchers and
Practitioners. IWA Publishing.
Wang, K., Saththasivam, J., Yiming, W.,
Loganathan, K. & Liu, Z. 2018. Fast and efficient
separation of seawater algae using a low-fouling micro/nano-composite membrane. Desalination 433: 108-112. https://doi.org/10.1016/j.desal.2018.01.032
Yang, Y. & Zhao,
H. 2022. Water-induced polymer swelling and its application in soft
electronics. Applied Surface Science 577: 151895. https://doi.org/10.1016/j.apsusc.2021.151895
*Corresponding
author; email: wafisnj@iium.edu.my
|