Sains Malaysiana 53(6)(2024): 1309-1320

http://doi.org/10.17576/jsm-2024-5306-07

 

Development of PCL/PMMA and PCL/PEG Polymeric Film as Potential for Algae Removal

(Pembangunan Filem Polimer PCL/PMMA dan PCL/PEG Berpotensi sebagai Penyingkiran Alga)

 

SHAHIRA HUSNINA SHABUDDIN1, NORMAWATY MOHAMMAD-NOOR2, NORAZMI AHMAD1,3, ANWAR IQBAL4 & MOHAMAD WAFIUDDIN ISMAIL1,3,*

 

1Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

2Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

3Sustainable NanoTechnology and Computational Modelling Research Group,

Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

4School of Chemical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia

 

Received: 2 January 2024/Accepted: 13 May 2024

 

Abstract

Human activities generate excess nutrients that can lead to harmful algal blooms (HABs), which are increasing in number and severity worldwide, causing significant ecological problems and substantial economic losses. Cost-effective polymeric films with ease of operation represent a promising and sustainable alternative to traditional HABs mitigation methods in various aquatic systems. In this study, composite polymer films, specifically polycaprolactone with poly(methyl methacrylate) (PCL/PMMA) and polycaprolactone with polyethylene glycol (PCL/PEG), were employed for algae mitigation. To the best of our knowledge, no prior studies have explored the application of PCL/PMMA and PCL/PEG composite polymer films for algae mitigation. These films were prepared using solvent casting methods. The successfully prepared film ratios were 1:0.2, 1:0.4, and 1:0.6. ATR-FTIR analysis confirmed the successful preparation of PCL/PMMA and PCL/PEG by detecting characteristic functional group peaks corresponding to each pure polymer, suggesting the possibility of non-covalent bond interactions between the polymers in the composites. Thermal analysis (TGA) indicated increased thermal stability for all film ratios. Algae mitigation studies form light microscope analysis showed the presence of algal cells within the composite. Removal efficiency improved with higher ratios of these composite polymer films, with PCL/PMMA outperforming PCL/PEG. Notably, the 1:0.4 PCL/PMMA film exhibited highly efficient algae removal, with interactions between microalgae cells and the film observed within a shorter time. This film achieved the highest removal efficiency of 10.6% within a 15-min interval compared to others. From this preliminary study, the composite polymer films show good potential and promising candidate for mitigating algae-related issues. 

 

Keywords: Harmful algal blooms; mitigation; PCL; PEG; PMMA; polymeric films

 

Abstrak

Nutrien berlebihan hasil aktiviti manusia telah mengakibatkan peningkatan kembangan alga berbahaya (HABs) yang dilihat semakin parah di seluruh dunia. Keadaan ini menyebabkan masalah ekologi yang ketara dan kerugian ekonomi yang besar. Sebagai alternatif kepada kaedah tradisi mitigasi HABs dalam pelbagai sistem akuatik, kajian ini memfokuskan pada penggunaan polimer filem yang kos berkesan dengan kemudahan operasi. Filem polimer komposit, khususnya polikaprolakton dengan poli(metil metakrilat) (PCL/PMMA) dan polikaprolakton dengan polietilena glikol (PCL/PEG), diuji sebagai satu kaedah penyelesaian yang berpotensi dan mampan bagi masalah pertumbuhan alga. Menurut carian kami, kajian dalam mengeksplorasi penggunaan filem polimer komposit PCL/PMMA dan PCL/PEG dalam mitigasi alga masih belum pernah dijalankan. Filem-filem ini telah disediakan melalui kaedah acuan pelarut dengan filem berjaya disiapkan pada nisbah 1:0.2, 1:0.4 dan 1:0.6. Analisis ATR-FTIR telah mengesahkan keberhasilan penyediaan PCL/PMMA dan PCL/PEG dengan kehadiran puncak kumpulan berfungsi yang sepadan dengan setiap polimer tulen dengan ini menunjukkan interaksi ikatan bukan kovalen antara polimer dalam komposit filem yang dihasilkan. Analisis termal (TGA) menunjukkan peningkatan kestabilan termal untuk semua nisbah filem. Kajian mitigasi alga daripada analisis mikroskop cahaya mendedahkan kehadiran sel alga dalam komposit filem. Kecekapan penyingkiran meningkat dengan nisbah filem komposit yang lebih tinggi dengan PCL/PMMA melebihi PCL/PEG. Filem PCL/PMMA, 1:0.4 menunjukkan keberkesanan penyingkiran alga yang tinggi dengan interaksi antara sel mikroalga dan filem berlaku dalam waktu yang lebih singkat. Dalam tempoh 15 minit, filem ini mencapai kecekapan penyingkiran tertinggi sebanyak 10.6% berbanding dengan nisbah lain. Daripada kajian awal ini, dapat disimpulkan bahawa filem polimer komposit memperlihatkan potensi yang besar dalam menangani isu berkaitan dengan pertumbuhan alga dan merupakan calon berkemampuan untuk aplikasi lebih lanjut.

 

Kata kunci: Filem polimer; mitigasi; PCL; PEG; pertumbuhan alga merbahaya; PMMA

 

REFERENCES

Abdelrazek, E.M., Hezma, A.M., El-khodary, A. & Elzayat, A.M. 2016. Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egyptian Journal of Basic and Applied Sciences 3(1): 10-15. https://doi.org/10.1016/j.ejbas.2015.06.001

Balaji-Prasath, B., Wang, Y., Su, Y.P., Hamilton, D.P., Lin, H., Zheng, L. & Zhang, Y. 2022. Methods to control harmful algal blooms: A review. Environmental Chemistry Letters 20: 3133-3152. https://doi.org/10.1007/s10311-022-01457-2

Belin, C., Soudant, D. & Amzil, Z. 2021. Three decades of data on phytoplankton and phycotoxins on the French coast: Lessons from REPHY and REPHYTOX. Harmful Algae 102: 101733. https://doi.org/10.1016/j.hal.2019.101733

Bhagabati, P. 2020. Biopolymers and biocomposites-mediated sustainable high-performance materials for automobile applications. In Sustainable Nanocellulose and Nanohydrogels from Natural Sources, edited by Mohammad, F., A. Al-Lohedan, H. & Jawaid, M. Elsevier. pp. 197-216. https://doi.org/10.1016/b978-0-12-816789-2.00009-2

Chekli, L., Eripret, C., Park, S.H., Tabatabai, S.A.A., Vronska, O., Tamburic, B., Kim, J.H., & Shon, H.K. 2016. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water. Separation and Purification Technology 175: 99-106. https://doi.org/10.1016/j.seppur.2016.11.019

Cotruvo, J. 2015. Treating algal blooms and algal toxins in drinking water. Opflow 41(2): 16-17. https://doi.org/10.5991/opf.2015.41.0008

Del Ángel-Sánchez, K., Borbolla-Torres, C.I., Palacios-Pineda, L.M., Ulloa-Castillo, N.A. & Elías-Zúñiga, A. 2019. Development, fabrication, and characterization of composite polycaprolactone membranes reinforced with TiO2 nanoparticles. Polymers 11(12): 1955. https://doi.org/10.3390/polym11121955

Donell, M. (n.d.). The Dissolution of Polymethylmethacrylate (PMMA) in Salt Water. https://Www.ozmo.io/. Retrieved June 24, 2023, https://www.ozmo.io/the-dissolution-of-polymethylmethacrylate-pmma-in-salt-water/

Douglas, P.S., Albadarin, A.B., Sajjia, M., Mangwandi, C., Kuhs, M., Collins, M.N. & Walker, G. 2016. Effect of poly ethylene glycol on the mechanical and thermal properties of bioactive poly(ε-caprolactone) melt extrudates for pharmaceutical applications. International Journal of Pharmaceutics 500(1-2): 179-186. https://doi.org/10.1016/j.ijpharm.2016.01.036

Elzubair, A., Elias, C.N., Miguez, C., Lopes, H.P. & Vieira, B. 2006. The physical characterization of a thermoplastic polymer for endodontic obturation. Journal of Dentistry 34(10): 784-789. https://doi.org/10.1016/j.jdent.2006.03.002

Ghernaout, D. 2020. Water treatment coagulation: Dares and trends. Open Access Library Journal 7: e6636. https://doi.org/10.4236/oalib.1106636

Ghosh, S., Chatterjee, S., Shiva Prasad, G. & Pal, P. 2021. Effect of climate change on aquatic ecosystem and production of fisheries. In Inland Waters - Dynamics and Ecology, edited by Devlin, A., Pan, J. & Manjur Shah, M. IntechOpen. https://doi.org/10.5772/intechopen.93784

Hooman, M., Sajjadi, N., Marandi, R., Zaeimdar, M. & Akbarzadeh, N. 2021. Design of a novel PEBA/CDs polymeric fibrous composite nanostructure in order to remove navicula algal and improve the quality of drinking water. Polymer Bulletin 79(9): 7459-7477. https://doi.org/10.1007/s00289-021-03852-1

Huang, N., Li, S., Liu, H. & Wang, J. 2012. Thermal stability and degradation kinetics of poly(methyl methacrylate)/sepiolite nanocomposites by direct melt compounding. Journal of Macromolecular Science, Part B: Physics 52(4): 521-529. https://doi.org/10.1080/00222348.2012.716318

Ibrahim, N.H., Iqbal, A., Mohammad-Noor, N., Razali, R.M., Sreekantan, S., Yanto, D.H.Y., Mahadi, A.H. & Wilson, L.D. 2022. Photocatalytic remediation of harmful Alexandrium minutum bloom using hybrid chitosan-modified TiO2 films in seawater: A lab-based study. Catalysts 12(7): 707.

Imai, I., Inaba, N. & Yamamoto, K. 2021. Harmful algal blooms and environmentally friendly control strategies in Japan. Fisheries Science 87(4): 437-464. https://doi.org/10.1007/s12562-021-01524-7

Joh, G., Choi, Y.S., Shin, J.K. & Lee, J. 2011. Problematic algae in the sedimentation and filtration process of water treatment plants. Journal of Water Supply: Research and Technology-Aqua 60(4): 219-230. https://doi.org/10.2166/aqua.2011.035 

Li, M., Pu, Y., Chen, F. & Ragauskas, A.J. 2021. Synthesis and characterization of lignin-grafted-poly(ε-caprolactone) from different biomass sources. New Biotechnology 60: 189-199. https://doi.org/10.1016/j.nbt.2020.10.005

Li, Y., Ma, Q., Huang, C. & Liu, G. 2013. Crystallization of poly (ethylene glycol) in poly (methyl methacrylate) networks. Materials Science 19(2). https://doi.org/10.5755/j01.ms.19.2.4430

Mansoori, S., Davarnejad, R., Matsuura, T. & Ismail, A.F. 2020. Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing 84: 106381. https://doi.org/10.1016/j.polymertesting.2020.106381

Mansur, H.S., Oréfice, R.L. & Mansur, A.A.P. 2004. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45(21): 7193-7202. https://doi.org/10.1016/j.polymer.2004.08.036

Molnar, C. & Gair, J. 2019. Overview of Photosynthesis.https://opentextbc.ca/biology/chapter/5-1-overview-of-photosynthesis

Mousavian, Z., Safavi, M., Salehirad, A., Azizmohseni, F., Hadizadeh, M. & Mirdamadi, S. 2023. Improving biomass and carbohydrate production of microalgae in the rotating cultivation system on natural carriers. AMB Express 13: 39. https://doi.org/10.1186/s13568-023-01548-5

Naser, A.Z., Deiab, I., Defersha, F. & Yang, S. 2021. Expanding poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) applications: A review on modifications and effects. Polymers 13(23): 4271. https://doi.org/10.3390/polym13234271

Niu, Z.G., Hu, Z.P., Zhang, Y. & Sun, Y.Y. 2017. Effect of chlorine dosage in prechlorination on trihalomethanes and haloacetic acids during water treatment process. Environmental Science and Pollution Research 24: 5068-5077. 10.1007/s11356-016-8265-x

Niu, Y., Dong, W., Wang, H., Bi, D., Zhu, G., Tang, S., Wei, J., Yang, L. & Yao, X. 2014. Mesoporous magnesium silicate-incorporated poly(ε-caprolactone)-poly(ethylene glycol)poly(ε-caprolactone) bioactive composite beneficial to osteoblast behaviors. International Journal of Nanomedicine 9(1): 2665-2675. https://doi.org/10.2147/ijn.s59040

Osama, A., Hosney, H. & Moussa, MS. 2021. Potential of household photobioreactor for algae cultivation. Journal of Water and Climate Change 12(6): 2147-2180. https://doi.org/10.2166/wcc.2021.261

Panagopoulos, A. 2021. Study and evaluation of the characteristics of saline wastewater (brine) produced by desalination and industrial plants. Environmental Science and Pollution Research 29(16): 23736-23749. https://doi.org/10.1007/s11356-021-17694-x

Pardeshi, P.M. & Mungray, A.A. 2019. Photo-polymerization as a new approach to fabricate the active layer of forward osmosis membrane. Scientific Reports 9: 1937. https://doi.org/10.1038/s41598-018-36346-8

Patrojanasophon, P., Pitaktunskul, B., Ngawhirunpat, T., Akkaramongkolporn, P., Opanasopit, P. & Nattapulwat, N. 2019. Effect of polyethylene glycol on cellulose acetate films designed for controlled porosity osmotic pump systems. Indian J. Pharm. Sci. 81(1): 117-123. https://doi.org/10.4172/pharmaceutical-sciences.1000486

Pekdemir, M.E., Öner, E., Kök, E. & Qader, I. 2021. Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iranian Polymer Journal 30(6): 633-641. https://doi.org/10.1007/s13726-021-00919-8

Rajasulochana, P. & Preethy, V. 2016. Comparison on efficiency of various techniques in treatment of waste and sewage water - A comprehensive review. Resource-Efficient Technologies 2(4): 175-184. https://doi.org/10.1016/j.reffit.2016.09.004

Repanas, A., Wolkers, W.F., Gryshkov, O., Muller, M.A. & Glasmacher, B. 2015. PCL/PEG electrospun fibers as drug carriers for the controlled delivery of dipyridamole. Journal of In Silico and In Vitro Pharmacology 1(2): 1-10. https://doi.org/10.21767/2469-6692.10003

Qi, J., Ma, B., Miao, S., Liu, R., Hu, C. & Qu, J. 2021. Pre-oxidation enhanced cyanobacteria removal in drinking water treatment: A review. Journal of Environmental   Sciences 110: 160-168. https://doi.org/10.1016/j.jes.2021.03.040

Ren, X., Yu, Z., Qiu, L., Cao, X. & Song, X. 2021. Effects of modified clay on Phaeocystis globosa growth and colony formation. International Journal of Environmental Research and Public Health 18(19): 10163. https://doi.org/10.3390/ijerph181910163

Sen, B., Tahir, M., Sonmez, F., Turan Kocer, M.A. & Canpolat, O. 2018. Relationship of algae to water pollution and waste water treatment. In Water Treatment, edited by Elshorbagy, W. & Chowdhury, R.K. IntechOpen. https://doi.org/10.5772/51927

Sonawane, S., Thakur, P., Sonawane, S.H. & Bhanvase, B.A. 2021. Nanomaterials for membrane synthesis: Introduction, mechanism, and challenges for wastewater treatment. In Handbook of Nanomaterials for Wastewater Treatment, edited by Bhanvase, B., Sonawane, S., Pawade, V. & Pandit, A. Elsevier. pp. 537-553. https://doi.org/10.1016/b978-0-12-821496-1.00009-x

Tang, C.Y., Yang, Z., Guo, H., Wen, J.J., Nghiem, L.D. & Cornelissen, E. 2018. Potable water reuse through advanced membrane technology. Environmental Science & Technology 52(18): 10215-10223. https://doi.org/10.1021/acs.est.8b00562

Ulu, A., Köytepe, S. & Ates, B. 2016. Synthesis and characterization of PMMA composites activated with starch for immobilization of L-asparaginase. J. Appl. Polym. Sci. 133(19): 43421. https://doi.org/10.1002/app.43421

Venâncio, C., Ferreira, I., Martins, M.A., Soares, A.M., Lopes, I. & Oliveira, M. 2019. The effects of nanoplastics on marine plankton: A case study with polymethylmethacrylate. Ecotoxicology and Environmental Safety 184: 109632. https://doi.org/10.1016/j.ecoenv.2019.109632

von Sperling, M., Verbyla, M.E. & Oliveira, S.M.A.C. 2020. Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners. IWA Publishing.

Wang, K., Saththasivam, J., Yiming, W., Loganathan, K. & Liu, Z. 2018. Fast and efficient separation of seawater algae using a low-fouling micro/nano-composite membrane. Desalination 433: 108-112. https://doi.org/10.1016/j.desal.2018.01.032

Yang, Y. & Zhao, H. 2022. Water-induced polymer swelling and its application in soft electronics. Applied Surface Science 577: 151895. https://doi.org/10.1016/j.apsusc.2021.151895

 

*Corresponding author; email: wafisnj@iium.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next